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Introduction
* Physics experiments are usually out to

— Discover something
* Find events that cannot be explained by the standard model

* Find a few events above a background

— Statistics of small numbers

— Measure something very precisely
* Analyze many events in detail
* Have very good control over the experiment

* Systematic uncertainty
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Typical Problem

* Search for events generated 1in some process

* The number of predicted events 1s given by

n,.q.=acc XlumiXXS+n,,

pred

where:
— acc: signal acceptance, fixed and known
— lumi: integrated luminosity, fixed and known

— n,, : the number of background events due to ordinary SM

e
processes, fixed and known

* The experiment tries to determine the cross section XS
by relating n, to the observed events ngy

* Usually either a measurement + 1 sigma

or a 90% contfidence interval 1s given
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Probability everyone can agree on

* Given a known predicted yield p=n . , what is the

probability to observe count n=ny, in data?

* Poisson statistics
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But what 1f I don't know the cross
section and cannot predict the yield
but want to determine it
from the observed count?
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Frequentist vs Bayesian statistics
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Statistics Philosophies
Probability 1s:

Frequentist Bavyesian

* The limiting relative frequency

: * Subjective:
of a certain outcome:

_ #of outcome A P(A) = degree of belief that
P(A)=1lim I 7 measurements hypothesis A 1s true
n—-—o n

* Intuitive definition
* True values can never be

determined precisely * Degree of belief in a

measurement

* Includes several assumptions + Depends on degree of belief in

_ E iment i table, :
xperiment is repeatable underlying theory

parameters don’t change, each
measurement has the same
probabilit
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What 1s a 90% confidence interval?

Frequentist

* [f I repeat an experiment
many times (and create a
confidence interval in each
experiment), the true value U,

will lie inside the interval
90% of the time.

* Statement about many
(hypothetical) experiments

* We (Physicists) like to argue
in Frequentist terms

We try to convince others in
Frequentist language
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Bayesian

* If I determine a 90%
confidence level interval in a
single experiment, 90% of the
possible values for the true
value U, lie inside the

Bayesian interval.

* Statement about the true
value

* We (Physicists) like to think
and feel in Bayesian terms

We form our own opinion with
Bayesian intuition



ayesian Analysis

—
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Simple probability

P(A): Probability that A 1s true
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Conditional probability

P(BIA): conditional probability
for B, given that A 1s true.
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Bayesian Statistical Analysis

P(n | Nyed ) X P(nl&)

P(npedlndjs)— P(ng. )

e Forus: ny,y = bkg sum + acc x lumi x XS

* If signal and data are distributed over multiple
channels, take product of likelihoods 1n all channels

Ptot=H P(n;redlniobs)
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—

ayesian Statistical Analysis

P(ndgS | nﬁl ) X P(n@

P(Npyeg | N ) = P(ng. )

“Posterior probability”™ Likelihood

Frobability
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Bayesian Statistical Analysis

—

P(ng, I n4) X
P(npmd | N 4y ) — ) pred
P(n gy )
“Posterior probability” T jkelihood Normalization

factor

* Much discussion about the prior 1n statistics

— Often choice 1s not clear

* For example Vtb is proportional to sqrt(XS), different result if
prior 1s flat in Vtb or in XS

— Usually goal 1s “uninformed prior”
— For us the choice 1s always prior flat in cross section
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ayesian Statistical Analysis

—

P(n | Nyed ) X P(nl&)

P(n 4l ng.) =
pred P(n gy )
“Posterior probability”  Lijkelihood Normalization ‘prior
factor probability”™
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ayesian Statistical Analysis

—

P(n, | Nyed ) X P(nl&)
P(npmdlndjs)— P(ng. )

“Posterior probability”™

y

" Tevatron Preliminary, August 2009
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Bayesian Statistical Analysis

—

P(ny.ln X
P(nped | N 4y ) — ( o —_—pred )
P(ndx )
“Posterior probability” Likelihood Normalization
factor

* Cross section

(posterior peak) 2 035
* Cross section uncertainty g
(68% error band) g o2
* 90% confidence level limit g o
(integral from left) 3 005

o ¥ s 8 10

single top cross section
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Simple Bayesian example
u=n_ . ,=accXlumixXXS§+n,,

N = 10, Ny =7.5, ace x lumi = 0.5/pb
—1.e. naively expect cross section of Spb

Compute Bayesian posterior for XS using simple

spreadsheet N N
P(Nobs,l) =

Nobs!

Prior for XS 1s flat in XS
Neglect posterior normalization

Reinhard Schwienhorst, Michigan State
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Simple Bayesian example
Nobs=10 Nbkg=7.5 acc*lumi=0.5/pb

XS [pb] W P(NobslL)
0 7.5 0.09

u=n_ . =accXlumixXX§+n,,

Reinhard Schwienhorst, Michigan State
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Simple Bayesian example
Nobs=10 Nbkg=7.5 acc*lumi=0.5/pb

XS [pb] W P(Nobslu)
0 7.5 0.09
1 8 0.1
2 8.5 0.11
3 9 0.12
4 9.5 0.12
5 10 0.13
6 10.5 0.12
7 11 0.12
8 11.5 0.11
9 12 0.1

10 12.5 0.1
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Simple Bayesian example
Nobs=10 Nbkg=7.5 acc*lumi=0.5/pb

XS [pb] L P(Nobslu) 014
0 7.5 0.09 015 Cama
1 8 0.1 %‘ 01 m " u L
2 8.5 011 & 0.08"
3 9 012 S 0086
£ 0.04
4 9.5 0.2 8 ..,
5 10 0.13 0
6 10.5 0.12 0 2 4 6 8 10 12
7 11 0.12 %S 1P
8 11.5 0.11
9 12 0.1
10 12.5 0.1
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Simple Bayesian example in top statistics

* In climit.cpp, likelihood_generic:

long double y=1;

for(int ichannel = nChannels-1; ichannel >= 0; --ichannel) {
double m = nobs[ichannel]; // Observed count for ichannel
double s = bkg[ichannel]; // Sum for total yield in any bin
// Add signal
s += accL[ichannel]*x; // X = cross-section
// evaluate the poisson
long double val = poisson(m, s);
// Compute product over bins
if(val>=0.) y *= val;

J

return y;

* Multiple channel: likelihood 1s product over all channel

* Plus checks for invalid input numbers, y getting smaller than long

double limait, etc.
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Including systematic uncertainties

* Including systematics: Integrate over systematics

P(ng, | Nyed ,Sys) X P(XS) x P(sys)

P(Npg | Ny ) = ﬂ

* P(sys) 1s a Gaussian
* Systematics either global or per channel
* Protect against “‘crazy’ systematics
— That are far above nominal or go below 0O yield (truncate)

* Integration using Monte Carlo sampling
— anywhere from 2k NSamples to 1M NSamples
— Re-draw 1Sample 1f too many bins go to 0

95 P(ng, )
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Systematic uncertainty integration

* Generate systematic shifts in limit_base:
for(NSamples systematics samples) {
for(systematics names) {
val = myrandom.Gaus(); // random shift for each systematic name
sysshift[sys name] = val;
}
}
* Fill background sum for each systematic sample in
input.cpp, input:: AddSysShiftedValue():
for(bins) {
for(systematics names) {
diff = shift™(_syst[sysname].getValuesPlus()[1ibin]-value0);
1f(shift<0.) diff = shift*(valueO-_syst[sysname].getValuesMinus()[1bin]);
}

bin_value += diff;

}

* Plus lognormal distribution, many checks of inputs and outputs
Reinhard Schwienhorst, Michigan State
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Systematic uncertainty integration

Systematics posterior 1s actually sum of individual posteriors from
each 1Sample

Determine posterior for each systematic sample in limit_bayesian:
for(NSamples systematics samples) {

for(XS point) {
val = likelihood_generic(Nobs,sys_bkg[iSample],accL[1Sample],XS);
F[XS] += val; // later in the code
}
}

Each of the inputs 1s an array containing all bins

Actual code 1s more complex, has more loops than this, lots of
checking of inputs and outputs going on, plus histogram filling

Plus: First quick evaluation of posterior at only a few points, then full
posterior evaluation only for those 1Sample that have large posterior
integral estimate

Then normalize the posterior sum to unit area later when analyzing
posterior
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Special systematic:

MC statistics uncertainty

* Integration of MC statistics
requires large number of samples

* Instead, integrate MC statistics
uncertainty analytically

— Using Gamma prior
instead of Gaussian prior

— Introduces slight bias
* No problem as long as
MC statistics uncertainty
1s small contribution
* Special sys name: Mcstats

* Integration in poisson_gamma

in climit.cpp

rel. stat. uncertainty

o
o

----- Sampling
--- Gamma prior

— no MC stats

TR IS SR S N N W'
60 80 100

| '2|0' | '4|0' |
# of samples [x 1000]

0.035
0.03/
0.025|
0.02/
0.015}
0.01;
0. 005;'

—no Sys

IIIIII
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Debug/Info histograms

Output to screen

— Program progress

— Cross section measurement

— limit

Histograms and plots 1n root file

Background sum and acc*L for all bins as used

— Including systematic uncertainties, added in quadrature
Distribution of Gaussian random numbers for each
systematic name

Posterior with peak position and uncertainty

— Can also do 2d posterior in case of 2 signals
Systematics posterior

Reinhard Schwienhorst, Michigan State 20



* DO single top example

Input distribution

zoom to first
few bins
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Systematic uncertainties

* Integration over systematics is done by sampling

from Gaussian distribution, then summing

— Shown on left

* Rather than summing, histogram this systematic,

with posterior weights
— Systematics histogram, integrated over posterior (right)

TRF

Entries

2000

Mean 0.03115
RMS

1.015

N WA OO N O
===

m_IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII|II

-
19 O
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Bayes factor, Bayes ratio

We can get an equivalent of a significance out of the

Bayesian posterior

— Bayes factor: Integral over peak region divided by O-
signal

— Need to specify in input £ 030
what area to integrate over g 0022_

* Signal. XS ié’ 02
Signal. XS .Error S .15
Alternative: Bayes factor 3 S
— Peak height over 0-XS height S o

Interpret these as p-value
equivalent, then take TMath::NormQuantile(1-p)

Not widely used, no clear interpretation

Reinhard Schwienhorst, Michigan State
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Frequentist Analysis
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Frequentist statistics

Only statements about true value, not measured
— What if I had repeated the experiment many times?
In top_statistics, done through ensemble testing:

— How does this actual data experiment compare with
ensembles of pseudo-data?

Ensemble of background-only pseudo-datasets

— Generate ~oo # of background-only pseudo-datasets
Compute log-likelihood ratio for each pseudo-dataset
Count how many background-only pseudo-datasets
have LLR = data

— Or 2 mean of a sig+bkg ensemble

Reinhard Schwienhorst, Michigan State
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Ensemble generation

Read 1n sources and bins and channels exactly as for
Bayesian limit setting

Sample from systematic uncertainties

— Same code/procedure as MC integration

Then calculate background sum in each channel for
this particular set of systematic shifts

Then draw random Poisson number for this
background sum in this channel

— Or for background+signal if required

Store bin counts 1n text file, one line per pseudo-
dataset

Reinhard Schwienhorst, Michigan State
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Log-likelihood ratio

* Use Bayesian code to calculate log-likelihood ratio
significance
— LLR, also used 1n all Tevatron Higgs analyses

* Procedure: generate pseudo-datasets, calculate LLR
value for each:
— Compare null hypothesis (Hj, background only)

and alternative hypothesis (H; or Hgs, signal+background)
« Compute likelihood of observing background-only p(H)
and of observing SM signal + background p(Hgy,)

* Likelihood 1s again just Poisson probability
p(Hy) = Poisson(n | nbkg)
p(Hgq\) = Poisson(ng, | SM signal + nbkg)

e Form test statistic LLR =-2 In[ p(Hg) / p(Hy) ]

Reinhard Schwienhorst, Michigan State
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LLR in practice
— LLR =-2In[ p(Hgy) / p(Hp) ]

— If no systematics:
« p(Hy) = Poisson(data | background only)

* p(Hg) = Poisson(data | signal+background)
— With systematics:
* Integrate over systematics Bayesian style to compute both p's

— Store Poisson values in array to speed up code
* Need to evaluate LLR for millions of pseudo-dataset

— p-value 1s fraction of bkg-only pseudo-datasets with LLR
value smaller than SM peak

— Convert to Gaussian significance using
TMath::NormQuantile(1-p)

Reinhard Schwienhorst, Michigan State
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LI R distribution

E ~Background only
10°F — su signal + background

—— SMLLRt 1o

—
=i

III|T|1 Illmq III

2,

—
S

Pseudo-Experiments
2

10°

-60 -40 -20

20 4 60 0
-2In?p(HSM)!p(Hj

— p-value as probability to observe LLR value seen in data
or something more extreme (lower)
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top _statistics details
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Limit setting code

* Code developed for DO single top analysis by
Harrison Prosper, Supriya Jain, Brigitte Vachon,
RS

— Underlying Bayesian analysis by Harrison Prosper

— Contributions by Gordon Watts, Dag Gillberg, Aran
Garcia-Bellido, Benoit Clement and others

— Original version developed for first single top analysis in
2004
— Now also used for Tevatron combination

* Ported to ATLAS by RS

Reinhard Schwienhorst, Michigan State
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Code structure

C++ user interface

— limit_bayesian

Configuration files using root TEnv

Underlying Bayesian likelihood calculation in C
— climit.cpp

Ensemble generation in ensemblemaker
Reading in of histograms in limit_base

Executables for each specific analysis
— Can do multiple evaluations 1n one executable

— Example: ensemble testing: generate, then loop over
thousands of pseudo-datasets

Reinhard Schwienhorst, Michigan State
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Program flow

1)Instantiate limit_bayesian object
+ Set cross section axis, debug flags, Nsamples

2)Read 1input channels
+ Channel-by-channel

+ For each channel, read list of inputs
+ data, then backgrounds, then signal
+ For each, nominal histogram, then systematics

« In BDT_helpers.hpp
3)Initialize input distribution
+ Convert channels to long input histogram

+ Generate systematics samples
+ In limit_base

4)Determine Posterior
+ In limit_bayesian, many calls to climit.cpp

S)Analyze posterior (cross section, limit, histogrames, ...)
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Additional macros

* Posterior plot for publications and talks
— 1d, 2d, with peak position, uncertainty, limit, etc
— Vtb evaluation (taking square root of XS)

* BLUE combination

— Generation of pseudo-datasets correlated between
multiple analysis methods

— Analysis of the resulting cross sections

* LLR plots

Reinhard Schwienhorst, Michigan State
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Conclusions

* Bayesian and Frequentist statistics both are usetul for
certain questions
— All systematic uncertainties are treated in Bayesian fashion
— Significance well defined using Frequentist statistics

* top_statistics provides statistical analysis tools
— Bayesian posteriors

— Tools to analyze them, measure cross sections and set limits
— Frequentist ensemble testing
— Macros for pretty plots

* If you need another tool or have a question, let me
know!
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